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Scaling in drop distributions: An application in combustion
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Scaling in the distribution of fragments in the explosion of a fuel drop is demonstrated. Consequences
for the process of emulsion combustion are discussed. A relation between unburned matter and the
value of the scale exponent of the distribution was obtained.
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I. INTRODUCTION

Water-fuel emulsions are widely recognized as a good
option for combustion improvement. In this case, the
process of fuel burning becomes more efficient, leading to
soot reduction and net fuel profit [1].

One of the reasons why emulsions improve combustion
processes is that, as observed by Ivanov and Nefedov [2],
emulsified fuel droplets tend to explode when heated,
hereby solving the problem of fuel atomization. The
emulsified fuel drop is a complex medium formed by fuel,
water, and surfactants. In conditions of high tempera-
ture, such as those existing in the combustion chamber, a
sudden process of bubble nucleation, leading to the split-
ting of the original drop in some fragments, is favored.
This process can still happen in some of the occurring
fragments leading to subsequent fractioning of the sys-
tem. The resultant distribution of secondary droplets
presents a larger effective surface to the combustion than
that of the original drop. Experimental studies of the
combustion of emulsion droplets confirmed their disrup-
tive behavior during the combustion [3]. It is interesting
to evaluate this combustion improvement of the
emulsified drop with respect to the combustion of pure
fuel.

As a first step it is necessary to describe the distribu-
tion of fragments produced by the drop burst. The key
problem is to find the law of fragment distribution by
size. Section II is devoted to this problem, where demon-
strative experiments of fuel drop breaking show that the
size distribution of fragments obeys a scaling law. This
fact allows us to establish a relationship between the scale
exponent of the distribution and the quantity of unburned
matter in one of the combustion steps. We show in Sec.
III that it is possible to speak about an “ideal” or “com-
plete” combustion condition for a given value of the scale
exponent. In Sec. IV we give an interpretation of this
complete combustion in terms of the self-similarity of the
distribution.

II. DEMONSTRATIVE EXPERIMENTS

Scaling has proved to be a widely observed
phenomenon in which the cumulative number per unit
volume N (r) of members in some collection whose sizes
are larger than r bears a power-law form

N(r)~r—>. (1)

1063-651X/94/49(5)/4027(4)/$06.00 49

Here x is the so-called scaling exponent. As examples
of this law, we can mention the Kordak law for cumula-
tive number of islands, the distribution of lunar craters,
atmospheric aerosols, etc. These and other examples are
discussed in [4], presenting also a simple geometric model
to describe the fracture process.

As was pointed out in the Introduction, emulsion
drops experience a fragmentation process in an early
stage of combustion and it is valid to pose the problem
about the validity of (1) to describe the distribution of
fragments. In order to do this we simulated experimen-
tally the process of drop microexplosions as follows (see
Fig. 1).

FIG. 1. Experimental setup for demonstration of scaling dis-
tribution of fragments produced by the burst of a fuel droplet:
(i) capillary in which the drop is hanging; (ii) thin capillary
through which air is injected into the interior of the drop; (iii)
drop of fuel oil; (iv) transparent sheet of acetate, collector of the
fragments produced by the fractioning of the drop.
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FIG. 2. Logarithmic plot of the cumulative number of frag-
ments vs radius for the experiment shown in Fig. 1, showing
scaling behavior. In this graph x =1.5. Units of r are arbitrari-
ly measured in the scale of the microscope.

In a glass capillary 1 there is a hanging drop of fuel oil
3. An even thinner capillary 2 goes throughout the capil-
lary 1 and enters the drop, in order to act as some kind of
“bubble generator.”” When air is injected by 2 a bubble is
formed inside the drop. The injection process is strong
enough to burst the drop, thus mimicking the process of
fragmentation for emulsified fuel drops. Fragments were
collected on a rolled transparent plate of acetate 4 and
counted with the help of a microscope. All carried out
experiments were performed under the same conditions
and with the same sample of fuel oil. All fragments
within the resolution of the microscope which reached
the plate were measured. The results are shown in Fig. 2,
where the logarithm of the cumulative number of frag-
ments is plotted as a function of the logarithm of their ra-
dius. A straight line was always obtained in this depen-
dence. The fragments of the original drop, when imping-
ing on the plate, stay there and, because of the charac-
teristics of the fuel oil (surface tension, viscosity), are only
slightly deformed from their spherical shape, so the
spherical shape of the collected fragments and their dark
color simplifies to some extent the process of counting
and measurement.

The process of measurement and counting of fragments
gives similar results for arbitrarily chosen sectors of the
plate. A scaling law with similar values of the critical ex-
ponent was always obtained. The experiments described
above clearly show that in the fracture of drops, frag-
ments are distributed according to a power law. Though
fracture processes have been studied and modeled (e.g., in
[5]), there are no reports on this kind of experiment in
“liquid drop fracture” revealing scaling also in this case.

III. CONSEQUENCES FOR COMBUSTION

Clearly, the process of combustion is improved if the
original drop breaks up into many pieces because of the
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increase of fuel-air interface. Once we know the distribu-
tion law of fragments, it is not difficult to evaluate the
consequences of this distribution for the combustion of
the oil drop. Following Eq. (1) we may put

N(r)=ar™* (2)

for the cumulative number of fragments. In this case, the
number of fragments (or secondary droplets) with radius
between r and r +dr is, taking the derivative of (2) with
respect to r,

n(ry=axr *71. (3)

We may consider that the initial drop volume ¥ can be
expressed through the volume of the largest fragment of
radius R, i.e.,

V==4mBR*, )

where B> 1 is a constant. The distribution function can
be normalized by

ax fORr2”‘dr=BR3 , (5)

which expresses that the sum of volumes of the fragments
produced by the explosion of the drop is equal to the
volume of the original one. This condition requires that
the fragmentation process is fast enough so fuel consump-
tion can be neglected during that time. Equation (5) gives

a=3"%pgp=x (6)
X
Finally,
n(r)=(3—x)BR*r * ! 7

is the number of fragments with radius between r and
r +dr. We now take into account this distribution in the
evaluation of the unburned volume fraction of the liquid
mass that was not gasified in the combustion chamber
and consequently not burned in the combustion process.
Therefore, information about the efficiency of the process
can be obtained by evaluating the amount of unconsumed
fraction in the set of fuel droplets.

In order to simplify the calculations we will suppose
that, after the fragmentation process has been accom-
plished, each secondary droplet burns independently of
the others, so that each drop can be considered as being
surrounded by an infinite quantity of gaseous oxidizer. In
[6], more complicated situations are considered and could
be used to make a less idealistic model for combustion of
drop distribution, though essential results would not be
different from those obtained here.

As is known, the combustion of isolated liquid drop
has three main step or phases.

(a) The ignition delay time, during which surface eva-
poration raises the concentration of the fuel vapor to the
point where spontaneous ignition occurs. During this
period, the diameter of the drop is negligibly changed.

(b) The burning phase, during which the droplet size
decreases until all the liquid fuel is evaporated.
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(c) The postdroplet period during which the residual
fuel is consumed.

We will suppose that the first step is fast and we center
our attention in the consequences of the scaled distribu-
tion of droplets in the second step. In a simple model the
radius of the droplet varies with time according to the
law [7]

The constant k is called the characteristic evaporation
constant of the fuel. r; is the initial drop radius and r is
the radius at time ¢.

Now let us introduce the “critical radius” r, as that for
which the drop is just consumed for a time 7 (in our sim-
ple model, 7 being determined essentially by the stay time
in the combustion chamber); the final radius, once that
time has elapsed, can be found by applying (8). If the ini-
tial radius has the value r;, the final radius will be zero
after 7. Fragments with size less than that determined by
ro will be completely consumed, whereas those with size
larger than that determined by r, will contribute to the
quantity of unburned matter. Hence, each drop with ini-
tial radius r larger than r; will give a volume of uncon-
sumed fuel given by %W(rz—kr)” 2, but by definition
ro=V'kr, so the quantity of unconsumed fuel given by
that drop is

i=4m(rt—rd)p2. )

0 o5,

FIG. 3. Graphs of the quantity of unburned matter given by
(11) for a value of B=10 [curve (a)] and by (10) for different
values of x. As can be seen, the combustion of the scaled distri-
bution of fragments leads to a sharp improvement of combus-
tion. As x—3 the condition for complete consumption is
reached.
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With (7) and (4) the quantity of unburned matter can
be calculated; if (9) is the quantity of unburned liquid fuel
given by a drop of initial radius 7, by summing the contri-
butions of the n (r) drops from the critical radius 7, up to
the largest radius of the fragments R, finally gives

1=3-x) [ §:<§2—§3)3/2§-~’1dg . (10)

Here I is the quantity of unburned liquid fuel given in
units of the volume of the original (mother) drop;
&=r/R, §=ry/R. On the other hand, the value of the
unburned volume fraction for a “nonfractioning” drop is
(expressed in units of the drop mass)

£

- B/

372

I=|1 (11)

In Fig. 3 we have plotted the results of (10) for different
values of x and of (11) as a function of §0=\/E'/R.
From the figure it can be seen that the process of con-
sumption is always improved with “exploding” or “frac-
tioning” drops, and becomes even faster as x approaches
3. In this case, the consumption appears to be instan-
taneous for all the distribution of fragments, reaching
some kind of complete combustion in this step of the pro-
cess.

IV. DISCUSSION OF THE RESULTS

The curious fact that consumption of the distribution
is instantaneous when x reaches the value 3 can be inter-
preted in terms of the self-similarity of the distribution,
following the same analysis as in [4].

For this, we may analyze a cubic volume with sides of
unit length. The cumulative number of drops in this cube
is given by (1). Next, select a piece of this cube with side

A"1(A>1). The cumulative number for this small
volume is
N, (P ~A7r 7%, (12)

If we now look at this volume with a microscope of
magnification A, the piece is transformed in the original
cube, the resolution is increased in this factor, and the
new limit for resolution is given by A~!r. A new distribu-
tion is observed with cumulative number

N, (A~ 7375 (13)

Hence it is easy to see that the condition x =3 implies
invariance of the cumulative number when the scale is
changed, i.e., the condition of self-similarity of the distri-
bution. There are many ways to see that this value is im-
possible to reach (x cannot be larger than the dimension
of the space). Application of the geometrical model of
fracture proposed in [4] leads to the results that x is al-
ways less than the value of the dimension of the space.
Therefore, in this model, the condition for “ideal com-
bustion” of fuel (understood as the condition for fastest
consumption of the distribution of drops) is equivalent to
scale invariance.

Finally, we want to point out that, though we have an-
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alyzed the implications of scaling in combustion, this
phenomenon has consequences in all phenomena involv-
ing distribution of particles and transport throughout in-
terfaces.
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